Telegram Group & Telegram Channel
В чем разница между бустингом и бэггингом?

Разница между бустингом и бэггингом заключается в том, как они комбинируют прогнозы базовых моделей:

1. Бэггинг
Принцип: В бэггинге создается множество подвыборок данных путем случайного выбора с заменой из исходного набора данных. Затем над каждой подвыборкой обучается отдельная базовая модель (например, решающее дерево).
Прогноз: Прогнозы отдельных моделей усредняются (для регрессии) или выбирается наиболее часто встречающийся класс (для классификации).
Пример: Случайный лес (Random Forest) - это пример бэггинга, где базовые модели - решающие деревья.

2. Бустинг
Принцип: В бустинге базовые модели обучаются последовательно. Каждая новая модель фокусируется на ошибках, сделанных предыдущими моделями, и пытается их исправить.
Прогноз: Прогнозы базовых моделей взвешиваются, и веса назначаются на основе их производительности. Прогнозы базовых моделей объединяются, и каждая следующая модель старается уменьшить ошибки предыдущих.
Пример: Градиентный бустинг (Gradient Boosting) и AdaBoost - это популярные методы бустинга.

В бэггинге модели независимы и усредняются, в то время как в бустинге модели взаимодействуют и учатся на ошибках друг друга, что позволяет им вместе достичь лучшей производительности.



tg-me.com/ds_interview_lib/43
Create:
Last Update:

В чем разница между бустингом и бэггингом?

Разница между бустингом и бэггингом заключается в том, как они комбинируют прогнозы базовых моделей:

1. Бэггинг
Принцип: В бэггинге создается множество подвыборок данных путем случайного выбора с заменой из исходного набора данных. Затем над каждой подвыборкой обучается отдельная базовая модель (например, решающее дерево).
Прогноз: Прогнозы отдельных моделей усредняются (для регрессии) или выбирается наиболее часто встречающийся класс (для классификации).
Пример: Случайный лес (Random Forest) - это пример бэггинга, где базовые модели - решающие деревья.

2. Бустинг
Принцип: В бустинге базовые модели обучаются последовательно. Каждая новая модель фокусируется на ошибках, сделанных предыдущими моделями, и пытается их исправить.
Прогноз: Прогнозы базовых моделей взвешиваются, и веса назначаются на основе их производительности. Прогнозы базовых моделей объединяются, и каждая следующая модель старается уменьшить ошибки предыдущих.
Пример: Градиентный бустинг (Gradient Boosting) и AdaBoost - это популярные методы бустинга.

В бэггинге модели независимы и усредняются, в то время как в бустинге модели взаимодействуют и учатся на ошибках друг друга, что позволяет им вместе достичь лучшей производительности.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/43

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

What Is Bitcoin?

Bitcoin is a decentralized digital currency that you can buy, sell and exchange directly, without an intermediary like a bank. Bitcoin’s creator, Satoshi Nakamoto, originally described the need for “an electronic payment system based on cryptographic proof instead of trust.” Each and every Bitcoin transaction that’s ever been made exists on a public ledger accessible to everyone, making transactions hard to reverse and difficult to fake. That’s by design: Core to their decentralized nature, Bitcoins aren’t backed by the government or any issuing institution, and there’s nothing to guarantee their value besides the proof baked in the heart of the system. “The reason why it’s worth money is simply because we, as people, decided it has value—same as gold,” says Anton Mozgovoy, co-founder & CEO of digital financial service company Holyheld.

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Библиотека собеса по Data Science | вопросы с собеседований from vn


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA